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SUMMARY

Unsteady Reynolds averaged Navier–Stokes (URANS) and detached eddy simulation (DES) related
approaches are considered for high angle of attack NACA0012 airfoil, wing–�ap, generic tilt-rotor
airfoil and double-delta geometry �ows. These are all found to be problem �ows for URANS models.
For DES �fth-order upwinding is found too dissipative and the use of, for high speed �ows, instability
prone centred di�erencing essential. An existing hybrid ILES–RANS modelling approach, intended
for �exible geometry, relatively high numerical dissipation codes is tested along with di�erential wall
distance algorithms. The former gives promising results. The standard turbulence modelling approaches
are found to give perhaps a surprising results variation. Results suggest that for the problem �ows, the
explicit algebraic stress and Menter shear stress transport (SST) URANS models are more accurate than
the economical Spalart–Allmaras (SA). However, the explicit algebraic stress model (EASM) in its k–�
form is impractically expensive to converge. Here, SA predictions lack a rotation correction term and
this is likely to improve these results. Copyright ? 2005 John Wiley & Sons, Ltd.

KEY WORDS: URANS; DES; ILES; aerospace; wall distance

1. INTRODUCTION

Especially in aerospace engineering, accurate turbulence modelling is a key design element.
Perhaps, the most popular aerospace Reynolds averaged Navier–Stokes (RANS) model is that
of Spalart and Allmaras [1]. This is referred to here as the Spalart–Allmaras (SA) model.
For attached �ows SA is generally both robust and accurate. Were it not for sensitivity to
free stream turbulence conditions, the low Reynolds number k–! model [2], which unlike
the k–�, more naturally links to the wall would be attractive. Observing the insensitivity of
the k–� model to free stream turbulence intensities Menter proposed the shear stress transport
(SST) model [3]. Near walls this uses k–!, a switching function giving k–� modelling away
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from them. Unlike Reynolds stress models (RSMs) both SA and Menter SST cannot model
turbulence anisotropy. For complex strain �elds this is important. RSM predictions have been
used to model airfoil �ows (see Reference [4]). However, for routine industrial design calcu-
lations they are computationally expensive. The explicit algebraic stress model (EASM) [5]
is potentially a cheaper RSM alternative that can predict anisotropy levels.
For massively separated �ows, large geometry dependent more coherent eddies occur. Then

the above RANS models become unsuitable [6]. For these �ows hybrid RANS-LES like
approaches [6, 7] have shown promise. The most popular is called detached eddy simula-
tion (DES). With DES [6] most of the boundary layer is URANS modelled, the remain-
ing �ow area treated using LES. In Reference [7] just the inner part of the logarithmic
layer is URANS modelled. A range of hybrid RANS-LES methods are well discussed by
Davidson and Dahlstrom [8]. Simple non-separated �ows present the strongest challenge to
hybrid RANS-LES type approaches [9]. Hence, here it is proposed to partly explore the
performances of hybrid RANS-LES related approaches for cases where generally the large
majority of the lift surfaces have attached �ow. For hybrid approaches to be reliable=useful
design tools it is important that they o�er sensible performance in this hybrid RANS-LES
challenging regime.
The industrial application of hybrid RANS-LES is increasing. However, the more robust

general solvers through which it is applied frequently rely on lower (typically second or third)
order (see, for example, References [10, 11]) upwind schemes. This is entirely understandable,
since, to directly quote from Reference [12] ‘most aerodynamic codes able to deal with com-
plex geometry are based on the �nite volume technique in order to handle degenerated cell.
Thus getting a higher-order method becomes very time consuming because of the high-order
quadrature needed to compute the �uxes along the cell boundaries’. More importantly, general
purpose, robust solvers tend to rely on dissipative upwind type convective schemes. For sta-
bility and hence robustness reasons these are attractive. However, the stability comes through
the introduction of excessive numerical dissipation (excessive numerical dissipation can also
arise due to preconditioning issues). For convective term discretization, to improve accuracy,
LES type simulations have incorporated �fth-order upwind schemes. However, even then, for
relatively simple geometries (see References [13, 14]) numerical dissipation can be so high
that the subgrid scale model has little e�ect. When solutions are switched to third-order up-
wind (see References [13, 15]) serious errors can occur. In the work of, for example, Garnier
et al. [15], when applying the third-order upwind version of Roe’s [16] �ux di�erence-splitting
algorithm, subgrid scale model omission was recommended. To remedy this, blending (see
References [17, 18]) of upwind and central di�erence schemes just in separation zones has
been attempted (the upwind component is retained for stability reasons). However, although
superior, such approaches again increase code complexity. Also, they can have an ad hoc
nature regarding the level of blending, where the blending should occur and how gradually
transition between nominally upwind and centred zones is a�ected. Understandably, indus-
trial, complex geometry hybrid RANS-LES related applications tend to use grids that are
coarser than desirable. Such simulations also tend to use stable lower order upwind di�er-
ences. Then the monotone-integrated LES (MILES) approach (see Reference [19]) where the
subgrid scale model is omitted and the dissipative numerical error used to drain turbulence
becomes, in a pragmatic sense, sensible (see Reference [15]). However, near walls turbulence
structures become excessively complex and �ne for sensible numerical resolution. As noted
by Boris et al. in this region the isotropy assumption of most LES subgrid scale models
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Figure 1. Geometries considered: (a) NACA0012; (b) wing–�ap; (c) double-delta;
and (d) generic tilt-rotor wing.

becomes invalid. Further more, as indicated by Fureby and Grinstein [20], near wall grids can
become highly anisotropic thus erroneously resolving isotropic components di�erently in di�er-
ent co-ordinate directions. Severe near wall grid stretching also introduces �lter commutation
errors. Thus near wall LES modelling becomes unattractive. However, in this region MILES
also has disadvantages. One being that, unlike LES, the implied subgrid scale stress can-
not, as it should, vanish. Therefore, for the above reasons, it would seem helpful to retain
a computationally economical RANS model in this near wall region. These industrial design
related modelling considerations suggest the hybrid approach of Tucker [21] where MILES
(or implicit LES–ILES—acknowledeging that not just monotone schemes can be used to re-
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place the subgrid scale model) is used away from walls and RANS near them. However,
this would leave a solution with a discontinuous ‘turbulence length scale’, the RANS scale
growing with wall distance (d) and then suddenly dropping to zero at the MILES=ILES zone.
This can be overcome by blending through use of a Laplacian. Tucker [21, 22], for example
solves the Eikonal wall distance [23] equation by marching it to the ILES–RANS interface,
a Laplacian being then added to blend the very di�erent RANS and ILES length scales. The
same hybrid ILES–RANS approach is tested here and contrasted with pure ILES. Also, the
SA DES technique [6] is tried with di�erent CDES (equivalent to the Smagorinsky constant
but in an SA LES framework) values along with the Menter SST based DES of Strelets [18].
The following URANS models are also considered: SA, Menter SST and the EASM of Gatski
and Speziale [5] in a k–� framework. It is worth noting that hybrid ILES–RANS is, under
certain circumstances, possibly a limiting case of standard SA DES. If CDES and numerical
accuracy are su�ciently low, away from walls numerical dissipation could dominate but the
near wall RANS modelling still be active.
The following Figure 1 geometries are considered: (a) NACA0012 at a 60◦ angle of attack;

(b) a wing–�ap con�guration; (c) a double-delta wing con�guration and an (d) idealized tilt-
rotor airfoil geometry. Case (b) exhibits separation over part of the �ap. The frame (c) (Case
(c)) �ow has leading edge separation. Cases (a) and (d) are used more as an extreme, illus-
trating hybrid scheme performances=traits for highly separated �ows, the other cases involving
relatively little separation.

2. NUMERICAL MODELLING

2.1. Equations of motion

Conservation of momentum is expressed using Equation (1) below:

@�ũi

@t
+

@�ũiũj
@xj

=− @p̃
@xi

+
@�̃ij
@xj

(1)

The symbol ũi is a �uid velocity component, � density, � viscosity (evaluated from
Sutherland’s equation), p̃ static pressure, t time and x the spatial co-ordinate. The stress
tensor, �̃ij, in Equation (1) is calculated using

�̃ij=2(�+ �T )
[
S̃ ij − 1

3
@ũj
@xj

�ij

]
(2)

where �ij is the Kronecker delta (�ij=1 if i= j and �ij=0 if i �= j). The strain rate tensor,
S̃ ij, is expressed as

S̃ ij=
1
2

(
@ũi

@xj
+

@ũj
@xi

)
(3)

The tilde and T subscript in the above equations are used to highlight or help identify that in
this work the variables can have dual meanings. For example, with pure URANS simulations
temporal phase averaged variables are resolved. On the other hand, with the hybrid simulations
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away from walls variables are spatially averaged. Consequently, in URANS simulations or
regions �T =�t , the eddy viscosity. For LES zones �T =�sgs, the subgrid scale viscosity. For
ILES �sgs = 0, i.e. e�ectively �T =�num the numerical di�usion. In conjunction with the above,
for compressible �ow, the following conservation of energy equation is solved

@Ẽ
@t
+

@
@xj
(ũj(Ẽ + p̃))=

@
@xj
(ũi�̃ij)− @q̃j

@xj
+

@ ̃ j

@xj
(4)

For the linear URANS and hybrid models  ̃ j=0. The total energy (internal and kinetic) per
unit volume is expressed as

Ẽ=�e+ 1
2�ũiũi (5)

where e=CvT and Cv is the constant volume speci�c heat. Note that in Equation (5) the
turbulent kinetic energy (k) contribution to Ẽi is ignored, i.e. k��e+ 1

2�ũiũi. Pressure, tem-
perature (T ) and � are related through the equation of state for a perfect gas p̃=�RT̃ . For
the heat �ux qj the following is used:

q̃=− (k̂ + k̂T )
@T̃
@xj

(6)

In the above, k̂ is the thermal conductivity. Also, k̂T =CP�T =PrT where Cp is the speci�c
heat at constant pressure and PrT =0:9 is the turbulent Prandtl number. It follows that in the
ILES zone since �T =0, k̂T =0. The continuity equation to go with the above is

@�
@t
+

@�ũj
@xj

=0 (7)

2.2. Turbulence models

Most of the turbulence models used are established and well detailed in references given
in the introduction. Therefore, generally, only brief descriptions of these are given. The less
standard or well-known models are perhaps the DES, hybrid ILES–RANS and EASM. Hence,
for these, more details are given. However, �rst URANS models are outlined and then their
DES=LES=ILES extension. As noted, in URANS mode, the following models are used (a)
SA; (b) Menter SST and (c) EASM. Due to the �ow separation, only in the URANS mode
full convergence can be gained (unless of course the base discretization is too dissipative).
SA solves a single eddy viscosity convection=di�usion transport equation. Menter SST is in

a sense hybrid, solving the k–! model near walls and the k–� away from them. It merges the
di�ering k–!=k–� models through a weighting expression having a similar form to Equation
(17) shown later. The Menter SST k transport equation has the length scale lk–!.
The EASM (model (c)) is solved in a k–� framework. With it, Equation (2) extends to
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where C1 and C2 are standard constants. Also
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and

 ̃ j=
(
�+

�T

�k
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(10)

where �k the Schmidt number for k.
It is straightforward to convert most of the above into ‘zonal LES’ models. For SA based

DES the RANS model d is replaced by

d̃= min(d;CDES�i) (11)

As proposed by Rollet-Miet et al. [9], using for convenience in a Cartesian coordinate system

�i= max(�x;�y;�z) (12)

However, other de�nitions are possible, for example, the following volume based expression:

�i=(�x�y�z)1=3 (13)

For SA DES, where CDES�i ¡d essentially a Smagorinsky LES model is gained. For Menter
SST based DES (see Reference [18]) the k equation lk–! is replaced by

l̃k–!= min(lk–!; CDES�i) (14)

2.3. Wall distances and hybrid ILES–RANS

In all of the above models, essentially the near wall turbulence length scale l=f(d). When
using search procedures d is surprisingly expensive to compute [24, 25]. It can potentially be
more economically evaluated from the following equation (see Reference [21]):

n|∇�|=1+ f(�)∇2�+ g(�) (15)

using one of two approaches. For the indirect approximate approach (i) (see Reference [26]),
n= g(�)=0, f(�)=1 in Equation (15) and

d= ±
√√√√∑

j=1;3

(
@�
@xj

)2
+
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j=1;3

(
@�
@xj

)2
+ 2� (16)

Equation (16) is derived by making a one-dimensional Poisson equation analytical solution.
With approach (ii) n=1, f(�)= �0�, g(�)= �1(�e=L)m and d=�, or in a DES context
(see later) d̃=�. The length scale L is the RANS region width (see Figure 2) and m is a
positive integer. When �0 = �1 = 0, Equation (15) reduces to the exact wall distance, hyperbolic
natured, Eikonal equation. The Eikonal equation can be solved by propagating fronts from
solid surfaces [23]. With the starting condition d = CDES�i the front propagation naturally
stops at the RANS=LES interface of a DES solution. The computed distance �eld can then
be imported into a standard CFD program with the SA URANS model activated and an SA
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Figure 2. Hybrid ILES–RANS turbulence length=distance scales.

DES solution will automatically result. No core solver changes are required. With �0, �1¿ 0
Equation (15) is a Hamilton–Jacobi equation. For hybrid ILES–RANS the Eikonal equation
can propagated towards the RANS=ILES interface. Then, inside the ILES region d=0 (or
in this context d̃=0). Finally, the Hamilton–Jacobi equation is solved. The Laplacian in this
enables a smooth d̃ transition between the RANS and ILES zones. The function g(d̃) can
be used to control the abruptness of the RANS length scale change as the ILES region is
approached. The Hamilton–Jacobi equation d̃ �eld can again be imported into a standard
URANS CFD solver (with a wall distance based turbulence model activated) and a hybrid
ILES–RANS solution will arise.
Figure 2, shows potential Equation (15) hybrid ILES–RANS d̃ length scales (the ILES–

RANS interface is set at, in the context for the current work, the arbitrary value of y+ ≈ 45).
The full line is for �0 = 0:2 and �1 = 1:5. The long dashed is for �0 = 0:2, �1 = 0 and m=1.
The short dashed line is the pure Eikonal solution (�0 = �1 = 0) stopped at the RANS=ILES
interface. Here ILES–RANS interfaces correspond to where they would occur for standard SA
DES (with SA used for the RANS model). Hence L can vary with surface location. Since, for
complex grid structures the DES L value can be discontinuous (see later) this is perhaps not
a good practice. Here, as a partial remedy for the complex grid structures, where |∇L| → ∞,
both L and d̃ are Laplacian smoothed as described in Reference [22] (i.e. the Laplacian is
not applied through the Hamilton–Jacobi equation but as a separate operation on a d �eld).
For SA and EASM solutions either (16) or the Eikonal equation used for d. Other solutions
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generally use a search procedure. However, it has been veri�ed [26] that the current URANS
results are insensitive to the d evaluation strategy.

2.4. Solution of �ow equations

The aerospace �ow cases are solved using structured grid �nite volume approaches having
second-order backwards di�erence temporal discretizations. All DES=ILES=LES type simula-
tions use Courant numbers of less the unity. Typically they are much smaller than this. For
the aerospace cases convective �uxes are discretized using Roe’s [16] �ux di�erence splitting
scheme. Essentially, these �uxes can be considered as

Jconv = (1− �)Jctr + �Jupw (17)

where Jctr and Jupw are central and upwind di�erence components and � is a weighting param-
eter. The parameters NCD and NUP de�ne the order of central di�erence and upwind solution
components, respectively. For di�usion terms second-order central di�erences are used. For
the aerospace �ows, the Navier–Stokes equations are discretized in their strong conservation
form. For the less separated �ow Cases (b) and (c) cross-terms are neglected in the discretized
equations. For all cases, average �rst o� wall grid nodes are at y+¡ 1. Cases (a) and (b) use
periodic cross-stream boundary conditions. The wing–�ap and double-delta geometry cases
are run in MPI parallel processing mode. Note, Cases (a) and (d) use a modi�ed version of
the NTS solver described in References [6, 8]. Cases (b) and (c) use a modi�ed version of
the NASA CFL3D solver.

3. RESULTS AND DISCUSSION

With the exception of Case (d), test cases are presented in order of decreasing separa-
tion. Hence, broadly speaking, the initial cases are, theoretically, more URANS challenging.
Conversely the latter are more hybrid RANS-LES=ILES challenging, the exception being Case
(d). Hybrid ILES–RANS validation cases for an Re� ≈ 1000 plane channel �ow using SA
RANS are discussed in Appendix A. For all Figure 2 �0, �1 combinations tested the ‘law of
the walls’ are found to be reasonable.

3.1. NACA0012 (Case (a))

The set-up for this 60◦ angle of attack case is as in Reference [6]. Therefore, only brief
details are given here. The ‘O’ grid has 142 radial nodes, 61 nodes wrapped around the
wing surface and 26 nodes in the cross-stream direction. The cross-stream domain width is
equal to the wing chord. For Re=1× 105 (based on the chord) the measured lift (CL) and
drag (CD) coe�cients are about 0.925 and 1.65, respectively. Hybrid ILES–RANS results are
found insensitive to Figure 2 �0, �1 combinations. Table I gives CL and CD values for various
solution approaches. Negative signs are used to represent magnitude under-predictions. The
�rst table entry shows the large error values for the Menter SST URANS model. As will
be seen later, this model is perhaps the best of all the URANS models considered here. The
poor Menter SST performance is because URANS models have insu�cient solution physics
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Table I. Summary of Case (a) CL and CD errors.

Errors

Model Discretization %CL %CD

Menter SST (URANS) �=1, NUP = 5 72 64
SA DES �=1, NUP = 5 19 13
SA DES �=0:1, NUP = 5, NCD = 4 9 3
Menter SST DES �=1, NUP = 5 12 5
ILES �=1, NUP = 3 12 4
Hybrid ILES–RANS �=1, NUP = 3 12 4
Hybrid ILES–RANS∗ �=1, NUP = 3 −1 −9

embodied in their modelling to account for the highly geometry dependent eddies arising from
massively separated �ows [6].
Comparison of the second and third table entries shows that for DES, where there is

a subgrid scale model to dissipate turbulence, centred di�erencing is very important. The
blended central di�erencing is just applied in the separated wake region using the method of
Strelets [18]. For solutions with a ILES component, to assist turbulence dissipation �=1 and
NUP =3. As might perhaps be expected for this massively separated, negligible boundary layer
content �ow, the ILES performance is reasonable. In fact, relative to SA DES, the potentially
greater level of resolved turbulence activity has given improved accuracy.
For this high angle of attack case there is relatively little boundary layer shear and hence

modelled turbulence generation. Also, with the hybrid ILES–RANS the modelled turbulence
away from solid surfaces is zero. Furthermore, the free-stream �ow convects this zero mod-
elled turbulence level into the near wall region. The combination of these factors results in
laminarization of the modelled hybrid ILES–RANS turbulence component. Hence, the ILES
and hybrid ILES–RANS results are virtually the same. However, with the satisfactory ILES
performance this is of no great concern. For the hybrid ILES–RANS∗ solution, shown in
the last table entry, the SA DES near wall modelled component is frozen and used in a
‘hybrid ILES–RANS’ solution. This has resulted in an extremely accurate CL prediction but
CD has deteriorated. Even so, both these values are better than those for standard SA DES
with NUP =5. The signi�cant levels of resolved �ow activity, which is enhanced by ILES use
can be seen in Figure 3 hybrid ILES–RANS∗ vorticity plot.
Of course, the more challenging regime for the hybrid eddy resolving-RANS approaches

is where there is minimal separation. For an angle of attack of 5◦ (i.e. a low angle away
from the hysteresis zone in CL; CD against angle of attack plots) the CL errors for the hybrid
ILES–RANS, SA DES and ILES are 4.94, −10:73 and −21:39%, respectively. It is di�cult
to explain why the hybrid ILES–RANS has better accuracy than SA DES. The hybrid ILES–
RANS also has the best CD accuracy with again ILES being worst.

3.2. Wing–�ap �ow (Case (b))

For Case (b) the wing and �ap angles are 2 and 40◦, respectively. The gap between the
wing and �ap is 0.6% of the wing chord. The Reynolds number is 23× 106 (based on
chord) and the Mach number 0.18. Flow simulations use �=1 and NUP =3. The measured CL
is 2.27.
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Figure 3. Hybrid ILES–RANS∗ instantaneous vorticity plot for NACA0012.

Figure 4 gives x−y plane views of the wing–�ap local grid, along with SA DES turbulence
‘length scales’ and wall local Eikonal distances. For hybrid ILES–RANS a Laplacian blends
such distances [22] with the ILES zone. The x − y plane uses just under 0.1 million grid
points. This is su�cient for RANS solution grid independence. The vertical domain is chosen
to exactly match the wind tunnel extent, the solid walls of which are treated using no-slip
boundary conditions. For DES, ILES and hybrid ILES–RANS simulations a periodic cross-
stream domain is used with 33 grid nodes and an extent of 2.5 times the �ap length. The
Figure 4(b) turbulence length scale is based on Equation (13). This usefully illustrates the SA
DES problem that d̃ can, for more complex grid systems, become non-smooth. For the present
case, with Equation (12) this non-smoothness is remedied. However, for the three-dimensional
double-delta geometry it is evident even with a �i= max(�x�y�z) ‘�lter’.
Unfortunately, the measurements compared with here are made in the identical small work-

ing section wind tunnel, with a similar high-lift con�guration to that considered by Rumsey
et al. [27]. Numerical comparisons for the latter suggest excessive wind tunnel wall and
mounting bracket in�uence. Therefore, the current computations are perhaps, in part, best
considered as suggestive of potential solution sensitivities with respect to turbulence mod-
elling for high-lift con�gurations.
Figure 5 compares pressure coe�cient (Cp) predictions with measurements. There is a

signi�cant di�erence between the SA RANS (dash–dot line), Menter SST (dashed line) and
EASM (full line) results. The hybrid ILES–RANS is shown using a dotted line. As noted by
Strelets [18], the choice of underlying RANS model in a DES simulation alters the separation
point location. Hence it has a strong solution in�uence. Since, there is a signi�cant di�erence
between SA and Menter SST URANS, both these models are compared in a DES context
along with ILES and hybrid ILES–RANS simulations. Table II summarizes predicted CL errors
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Figure 4. Grid and turbulence ‘length scales:’ (a) grid; (b) DES ‘length
scale’ (2D); and (c) Eikonal d (near wall).

for the di�erent models. A negative sign indicates a lift under prediction. Table entries are
ordered with decreasing predicted CL. SA gives the worst CL over-prediction and ILES the
biggest under-prediction. For the URANS predictions, changing to three-dimensional solutions
generally only has a minor accuracy bene�t. Relative to SA URANS, SA DES improves
agreement with measurements. Also, reducing CDES to 0.1, to partly give a more hybrid ILES–
RANS like solution (i.e. less dissipation in the wake region) produces a further agreement with
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Figure 5. Comparison of Cp measurements with predictions.

Table II. Summary of Case (b) (wing–�ap con�guration) CL errors.

Model %CL ‘Error’

SA URANS 16
SA DES 10
EASM URANS 7
Menter SST URANS 7
SA DES (CDES = 0:1) 2
Menter SST DES −3
Hybrid ILES–RANS −5
ILES −16

the measurements. Both the EASM and Menter SST URANS models have lower deviations
from the measured CL than SA. The improved CL agreement for Menter SST DES relative to
SA DES re�ects the ability of the Menter SST URANS model to capture the �ap separation
point.
Figure 6 gives �ap region helicity contours for the 3D Menter SST URANS and DES,

and hybrid ILES–RANS simulations. The contours suggest the URANS solution is quasi two
dimensional and that, as would be expected, the hybrid ILES–RANS has strongest resolved
activity. Figure 7 gives vorticity contours for the Menter SST DES (Frame (a)), hybrid ILES–
RANS (Frame (b)) and ILES (Frame (c)). Again, as might be expected, the wake region
extent increases with ILES solution content. Perhaps, surprisingly for the pure ILES solution
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Figure 6. Wing–�ap helicity contours: (a) Menter SST URANS; (b) Menter
SST DES; and (c) hybrid ILES–RANS.

the boundary layer �ow adjacent to the top airfoil surface appears to have large unsteady
structures. The hybrid ILES–RANS �ow �eld appears more physically plausible. Also, its CL
value is second closest to the measured value.
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Figure 7. Wing–�ap con�guration vorticity contours: (a) Menter SST based DES;
(b) hybrid ILES–RANS; and (c) ILES.

3.3. Double-delta wing con�guration (Case (c))

For this Re=2:2× 106 (based on half wing span) case the Mach number is 0.96. The angle
of attack is low at 6◦. Also, a 28 block grid, having 1:2× 106 cells is used with �=1 and
NUP =3. Figure 8 presents some Case (d) turbulence length scale related information. Frame
(a) gives SA DES contours of distance, in wall units, for the RANS=LES interface location,
i.e. L+. Frame (b) gives the surface grid and distance contours from Equation (15) with
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Figure 8. Double-delta wing distance related parameters: (a) d+ contours of LES–RANS interface for
SA DES with CDES =0:025; and (b) distance contours from Equation (15) in Eikonal form (Note,

distances shown are well beyond those needed for hybrid applications).

�0 = �1 = 0. For hybrid ILES–RANS solutions just near surface distances are used. The Frame
(b) surface grid illustrates the signi�cant non-uniform grid spacing variations around the
grid block interfaces. As Figure 8(a) suggests, reminiscent of Figure 4(b), these non-uniform
regions give rise to signi�cant variations in the SA turbulence length scale distribution and a
ragged RANS=LES interface. This non-uniformity is because the location is grid controlled.
Work attempting to address this problem, through interface region speci�cation is discussed
by Tucker and Davidson [7] and Temmerman et al. [28]. Another point to note from Figure
8 is that, although a very low CDES value of 0.025 is used, in some places L+ is large.
In fact, with the standard CDES value of 0.65, in certain places L+ ≈ 13 000. Conversely, the
�ne wing tip grid results in an interface location that tends to be around the inner part of the
logarithmic layer.
Figure 9 compares Case (c) RANS, DES and hybrid ILES–RANS Cp predictions with

measurements. The triangle and circle symbols give the wing upper and lower surface
Cp measurements, respectively. The lines give the various predictions. Pressure coe�cient
comparisons are made at the four Figure 10 locations. These are at 10; 30; 60 and 95% of
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Figure 9. Comparison of double delta Cp measurements with predictions: (a) 10% across wing;
(b) 30% across wing; (c) 60% across wing; and (d) 95% across wing.

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 51:261–283



TURBULENCE MODELLING OF PROBLEM AEROSPACE FLOWS 277

Figure 10. Locations of double delta Cp comparisons.

the wingspan. Despite the low angle of attack, the extent of the separated vortical region is
signi�cant. This suggests that the DES and the hybrid ILES–RANS methods might give some
bene�ts. Figure 9(a) shows that for the attached �ow inboard wing region all models give
similar results. At 10 and 30%, the agreement with measurements seems reasonable. It could
be argued the hybrid ILES–RANS results, given by the dotted line, show the best trends.
However, at 60% and x=c¿ 0:7 predicted Cp values clearly deviate from the measurements.
For example, at 60% the top surface measurements suggests the Cp distribution at x=c≈ 0:75
should have an in�exion. The hybrid ILES–RANS solution pro�le is closest to this state be
clearly not in�exional. At 95% large di�erences in both trends and magnitudes are evident
between the models. For example, the SA model suction pressures (full line) are too high.
Conversely the hybrid ILES–RANS are too low. The short then long dashed line represents
the SA DES. The integrated error for this (see later) is less than for SA but the solution
shows little unsteadiness. Conversely, as shown in Figure 11, the hybrid ILES–RANS gives
strong unsteadiness in the outboard region with vortex structures propagating over the upper
wing surface. These vortex structures and the added modelling challenge that they introduce
might explain the deviations between predictions for the larger x=c values. Alternatively, they
might be a consequence of having too little near wall modelling (cf. Figure 7(c)) i.e. too
small an L+. This aspect will be discussed further later. As can be seen from Figure 9, the
Menter SST (the long dashed line) gives better predictions than SA, but in DES mode the
results for these models are quite similar. Overall the EASM (long dashed and two short
dashes) shows better agreement than the Menter SST.
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Figure 11. Hybrid ILES–RANS near wing tip helicity contours for double-delta con�guration.

Table III. Summary of Case (c) PEP errors.

Model PEP

SA 2.6
SA DES 2.5
Menter SST 2.4
Menter SST DES 2.5
EASM 2.3
Hybrid ILES–RANS 2.2

In the absence of CL data, to make more quantitative comparisons the following pressure
error parameter (PEP) is de�ned:

PEP=
∑
1−4

( ∑
i=1;np

|Cp;num − Cp; exp|�si

)
(18)

where np is the number of experimental data points on each of the four pro�les. Also, Cp;num
and Cp; exp are the predicted and measured lift coe�cient values. The parameter, �si is the
surface length over which the pressure can be considered to act (a piecewise linear pressure
distribution is e�ectively assumed). Table III gives PEP values for the di�erent models. The
larger PEP the greater the error.
Results suggest, as in the work of Morton et al. [29], that SA is too dissipative to model the

vortical �ows characteristic of delta wings. RANS solutions with the SA-rotation correction
(see Morton et al. [29]) might well improve predictions. Table III shows the EASM is the
most accurate Case (c) URANS model. However, it proved very expensive to converge.
Considering that this is a non-ideal DES type method case, the hybrid ILES–RANS model
results show promise. However, observation of the Figure 9 hybrid ILES–RANS Cp curves
suggest the PEP value for this approach might be slightly �attering, i.e. at 95% across the
wing the hybrid ILES–RANS top surface Cp distribution is worst of all the models. Since the
wing tip surface area is relatively small the PEP is not greatly in�uenced by these Cp values.
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Figure 12. Tilt-rotor wing grid.

The Case (c) hybrid ILES–RANS length scale approximates to the �0 = 0:2, �1 = 1:5 pro�le
in Figure 2. However, the SA DES pro�le is more akin to that for �0 =�1 = 0 (but without the
abrupt length scale drop). Hence, for SA DES the integrated near wall modelled component is
greater. Also, as implied earlier, the grid is such that at the wing tip L tends to be small. The
diminished hybrid ILES–RANS integrated modelled length scale combined with the already
small L makes the wing tip modelling more akin to ILES than ILES–RANS. This probably
explains why the ILES–RANS solution is not so good in this region. However, clearly with the
hybrid ILES–RANS approach control of the level and spatial extent of the RANS modelling
can be exerted through L, �0 and �1 (as noted earlier the Hamilton–Jacobi turbulence length
scales have not been used for this case or the previous). It is therefore likely a hybrid ILES–
RANS interface with a constant L value based on turbulence physics and not grid would give
better results. This aspect is left as future work.

3.4. Tilt-rotor airfoil (Case (d))

There is no direct measurement data for this Re=3× 105 case. The geometry is quite similar
to that found in Reference [30] the case set-up and mesh topology (involving about 0.6
million cells) being identical. Hence only brief case details are given here. The key point
of this �nal case is to further illustrate the importance of wall modelling even on cases
with minor boundary layer content. Figure 12 shows a two-dimensional plane view of the
multi-block mesh. Figure 13 gives hybrid ILES–RANS vorticity (Frame (a)) and turbulence
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Figure 13. Hybrid ILES–RANS vorticity and turbulence viscosity contours for generic tilt-rotor wing
geometry: (a) vorticity contours; and (b) viscosity contours.

viscosity contours (Frame (b)). In Frame (a) large coherent vortex structures can be observed.
The Strouhal number for these is about 0.2 (based on the wing chord), this being a plausible
blu� body value. As can be seen from Frame (b) the lack of boundary layer shear and the
oncoming �ow with no modelled eddy viscosity results in only a small fraction of boundary
layer RANS modelling, this occurring on the right-hand side �ap surface. Without this small
RANS zone, the solution would be pure ILES. However, incorporation of the small RANS
component increases the predicted drag by over 14% !!. Hence the importance of the boundary
layer modelling and the dangers of using pure ILES is clear.
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4. CONCLUSIONS

Simulations have been made for high angle of attack NACA0012, wing–�ap, generic tilt-rotor
airfoil and double-delta geometry �ows. These are all problem �ows for URANS models.
The following URANS models were tested: SA; Menter SST and the EASM. Also, SA and
Menter SST versions of DES were tried along with the ILES–RANS approach. The latter
is intended for �exible geometry high-speed-�ow solvers. Understandably, such codes are
relatively dissipative. As shown for the DES NACA0012 even �fth-order upwinding is too
dissipative. Although not used in all the results, the hybrid ILES–RANS length scales can be
generated and controlled using a Hamilton–Jacobi equation. The standard turbulence modelling
approaches were found to give perhaps a surprising results variation. Results suggested that
the EASM and Menter SST URANS models were more accurate than SA (with no rotation
correction). However, the EASM is found very challenging to converge. The hybrid ILES–
RANS results are generally considerably better than pure ILES. They also give sensible lift
and drag values for �ows with low levels of separation. Such �ows are especially challenging
for hybrid RANS-eddy resolving approaches.

APPENDIX A

A.1. Plane channel �ow validation case

These Re� ≈ 1000 simulations use �=0, NCD =2 and the temporal discretization acts to dis-
sipate turbulence. The grid and domain size is such that at �rst o�-wall nodes y+ ≈ 1 with

Figure A1. Plane channel �ow ‘law of the wall.’ (©, ‘benchmark’ data; �0 = 0:2, �1 = 0;
�0 = 0:2, �1 = 1:5 and m=1; - - - - - �0 = �1 = 0; · · · · non-linear LES; +, ILES; .... LES).
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�x+ ≈ 200 and �z+ ≈ 100. Hence, the latter spacing is inadequate for LES near wall streak
resolution. Figure A1 gives fully developed �ow law of the walls. The O symbols represent
benchmark LES data [31]. Incidentally, this LES data is in virtually perfect agreement with
the measurements of Reference [32]. Non-linear Kosovic [33] and linear Yoshizawa [34] k–l
subgrid scale based LES results are given by the chain-dashed and dotted lines, respectively.
More details on the Kosovic modelling can be found in Reference [22]. The + symbols give
the pure ILES solution. As can be seen, and expected, the pure ILES and linear LES wall
laws are poor. The non-linear LES model improves agreement. Hybrid ILES–RANS results
for the Figure 2 d̃ scales are also shown in Figure A1. To help identify them, they keep
Figure 2 line styles. As can be seen, inclusion of near wall RANS modelling, with the lower
dissipation ILES away from walls, has produced a greatly improved law of the wall. For all
�0, �1 values resolved turbulence stress components are very similar to the k–l based hybrid
RANS-LES results in Reference [7], this code being used for these channel �ow simulations.
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